Synthesis of ZnAl<sub>2</sub>O<sub>4</sub> and Evaluation of the Response in Propane Atmospheres of Pellets and Thick Films Manufactured with Powders of the Oxide
Emilio Huízar-Padilla,
Héctor Guillén-Bonilla,
Alex Guillén-Bonilla,
Verónica-María Rodríguez-Betancourtt,
A. Sánchez-Martínez,
José Trinidad Guillen-Bonilla,
Lorenzo Gildo-Ortiz,
Juan Reyes-Gómez
Affiliations
Emilio Huízar-Padilla
Facultad de Ciencias Químicas, Universidad de Colima, Colima 28400, Colima, Mexico
Héctor Guillén-Bonilla
Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, M. García Barragán 1421, Guadalajara 44410, Jalisco, Mexico
Alex Guillén-Bonilla
Departamento de Ciencias Computacionales e Ingenierías, CUVALLES, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km 45.5, Ameca 46600, Jalisco, Mexico
Verónica-María Rodríguez-Betancourtt
Departamento de Química, CUCEI, Universidad de Guadalajara, M. García Barragán 1421, Guadalajara 44410, Jalisco, Mexico
A. Sánchez-Martínez
CONACYT-Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Carretera Zacatecas—Guadalajara Km 6, Ejido la Escondida, Zacatecas 98160, Zacatecas, Mexico
José Trinidad Guillen-Bonilla
Departamento de Electrónica, CUCEI, Universidad de Guadalajara, M. García Barragán 1421, Guadalajara 44410, Jalisco, Mexico
Lorenzo Gildo-Ortiz
Departamento de Física, CUCEI, Universidad de Guadalajara, Guadalajara 44410, Jalisco, Mexico
Juan Reyes-Gómez
Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, Colima 28045, Colima, Mexico
ZnAl2O4 nanoparticles were synthesized employing a colloidal method. The oxide powders were obtained at 300 °C, and their crystalline phase was corroborated by X-ray diffraction. The composition and chemical structure of the ZnAl2O4 was carried out by X-ray and photoelectron spectroscopy (XPS). The optical properties were studied by UV-vis spectroscopy, confirming that the ZnAl2O4 nanoparticles had a direct transition with bandgap energy of 3.2 eV. The oxide’s microstructures were microbars of ~18.2 nm in size (on average), as analyzed by scanning (SEM) and transmission (TEM) electron microscopies. Dynamic and stationary gas detection tests were performed in controlled propane atmospheres, obtaining variations concerning the concentration of the test gas and the operating temperature. The optimum temperatures for detecting propane concentrations were 200 and 300 °C. In the static test results, the ZnAl2O4 showed increases in propane response since changes in the material’s electrical conductance were recorded (conductance = 1/electrical resistance, Ω). The increases were ~2.8 at 200 °C and ~7.8 at 300 °C. The yield shown by the ZnAl2O4 nanoparticles for detecting propane concentrations was optimal compared to other similar oxides categorized as potential gas sensors.