Nature Communications (Mar 2022)

DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models

  • Chongliang Luo,
  • Md. Nazmul Islam,
  • Natalie E. Sheils,
  • John Buresh,
  • Jenna Reps,
  • Martijn J. Schuemie,
  • Patrick B. Ryan,
  • Mackenzie Edmondson,
  • Rui Duan,
  • Jiayi Tong,
  • Arielle Marks-Anglin,
  • Jiang Bian,
  • Zhaoyi Chen,
  • Talita Duarte-Salles,
  • Sergio Fernández-Bertolín,
  • Thomas Falconer,
  • Chungsoo Kim,
  • Rae Woong Park,
  • Stephen R. Pfohl,
  • Nigam H. Shah,
  • Andrew E. Williams,
  • Hua Xu,
  • Yujia Zhou,
  • Ebbing Lautenbach,
  • Jalpa A. Doshi,
  • Rachel M. Werner,
  • David A. Asch,
  • Yong Chen

DOI
https://doi.org/10.1038/s41467-022-29160-4
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 10

Abstract

Read online

A lossless, one-shot and privacy-preserving distributed algorithm was revealed for fitting linear mixed models on multi-site data. The algorithm was applied to a study of 120,609 COVID-19 patients using only minimal aggregated data from each of 14 sites.