The Astrophysical Journal (Jan 2024)
Repeating Nuclear Transients from Repeating Partial Tidal Disruption Events: Reproducing ASASSN-14ko and AT2020vdq
Abstract
Some electromagnetic outbursts from the nuclei of distant galaxies have been found to repeat on months-to-years timescales, and each of these sources can putatively arise from the accretion flares generated through the repeated tidal stripping of a star on a bound orbit about a supermassive black hole (SMBH), i.e., a repeating partial tidal disruption event (rpTDE). Here, we test the rpTDE model through analytical estimates and hydrodynamical simulations of the interaction between a range of stars, which differ from one another in mass and age, and an SMBH. We show that higher-mass (≳1 M _⊙ ), evolved stars can survive many (≳10−100) encounters with an SMBH while simultaneously losing few × 0.01 M _⊙ , resulting in accretion flares that are approximately evenly spaced in time with nearly the same amplitude, quantitatively reproducing ASASSN-14ko. We also show that the energy imparted to the star via tides can lead to a change in its orbital period that is comparable to the observed decay in the recurrence time of ASASSN-14ko’s flares, $\dot{P}\simeq -0.0026$ . Contrarily, lower-mass and less-evolved stars lose progressively more mass and produce brighter accretion flares on subsequent encounters for the same pericenter distances, leading to the rapid destruction of the star and cessation of flares. Such systems cannot reproduce ASASSN-14ko-like transients, but are promising candidates for recreating events such as AT2020vdq, which displayed a second and much brighter outburst compared to the first. Our results imply that the lightcurves of repeating transients are tightly coupled with stellar type.
Keywords