Clinical and Experimental Otorhinolaryngology (Aug 2021)
Changes in Mucin Production in Human Airway Epithelial Cells After Exposure to Electronic Cigarette Vapor With or Without Nicotine
Abstract
Objectives The emergence of electronic cigarettes (e-cigarettes) has created new perceptions of the tobacco market. Unlike traditional tobacco, the greatest advantage of e-cigarettes is that they have less smell and are convenient and inexpensive. Most e-cigarette smokers believe that e-cigarette smoking is less harmful than traditional smoking. Information on the effects of e-cigarettes on human health is limited, and the issue remains controversial. Methods We studied the effects of e-cigarette vapor on mucin (MUC5AC and MUC5B) and the change of MUC5AC and MUC5B from e-cigarette liquid with or without nicotine in respiratory epithelial cells. The effects of e-cigarette vapor with or without nicotine on mucin, along with the involved signaling pathways, were investigated using reverse transcriptase-polymerase chain reaction (PCR), real-time PCR, enzyme immunoassays, and immunoblot analysis with several specific inhibitors and small interfering RNA. Results E-cigarette vapor with or without nicotine stimulated MUC5AC, but not MUC5B, expression in respiratory epithelial cells. In addition, we showed that e-cigarette vapor with and without nicotine induced MUC5AC expression via activation of the mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase [ERK] 1/2 and p38) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways in human airway epithelial cells. Conclusion E-cigarette vapor with and with nicotine significantly increased MUC5AC expression in human airway epithelial cells.
Keywords