IEEE Open Journal of the Communications Society (Jan 2024)
Securing Unmanned Aerial Vehicles Networks Using Pairing Free Aggregate Signcryption Scheme
Abstract
Unmanned aerial vehicles (UAVs) have gained significant attention in robotics research during the past decade, despite their presence dating back to 1915. Unmanned Aerial Vehicles (UAVs) are capable of efficiently and successfully carrying out a range of tasks. As a result, the use of many UAVs to fulfill a specific mission has grown into a popular area of research. Researchers have conducted investigations on the use of numerous UAVs in various fields such as remote sensing, disaster relief, force protection, military warfare, and surveillance. Efficiency and robustness are crucial factors for carrying out key operations. Multiple groups of UAVs, through appropriate interaction and concerted procedures, can achieve these objectives. The unpredictable features of UAVs and their reliance on unprotected and widely available wireless networks create challenges in establishing secure communication between a private edge cloud and a UAV. Consequently, secret UAV networks that utilize edge computing necessitate supplementary precautions to safeguard their networks. This research paper talks about a simple, lightweight, certificate-free, heterogeneous online/offline aggregate signing scheme called CL-PFASC. It comes from the discrete logarithm problem. The concert scheme enables UAVs to communicate with a GS without the need for a bilinear coupling operation. We classify the UAVs as identity-based cryptography (IBC) and the ground station GS as public-key infrastructure (PKI). We verify the security features of the suggested scheme using a formal security evaluation method, the random oracle model, under confidentiality and unforgeability. We also evaluate its communication and computation costs and compare them to those of similar existing schemes. The performance and security study indicate that the suggested approach improves both efficiency and security.
Keywords