Nanophotonics (Mar 2023)

Electrically switchable and tunable infrared light modulator based on functional graphene metasurface

  • Luo Wei,
  • Abbasi Syeda Aimen,
  • Zhu Shaodi,
  • Li Xuejin,
  • Ho Ho-Pui,
  • Yuan Wu

DOI
https://doi.org/10.1515/nanoph-2023-0048
Journal volume & issue
Vol. 12, no. 9
pp. 1797 – 1807

Abstract

Read online

Graphene is emerging as an ideal material for new-generation optoelectronic devices. In this paper, a novel graphene metasurface-based electrically switchable and tunable infrared light modulator has been proposed and theoretically studied. The functional modulator comprises a monolayer graphene sheet sandwiched in a Fabry–Perot (FP) like nanostructure consisting of a metal reflector, a dielectric spacer, and an ellipse patterned anisotropy antenna layer. As a result of the photon localization effect of the guided-mode resonance (GMR) in the FP structure, the graphene electroabsorption can be significantly enhanced to enable a high-performance light modulator. By fine-tuning the Fermi energy (Ef) of graphene via controlling its bias-gate voltage, the proposed modulator can switch between a perfect absorber and a reflective polarization converter of high conversion efficiency (i.e., >90%) at 1550 nm. The conversion mechanism and the geometric dependences of the infrared light modulator have been investigated. We further demonstrated the tunability of the highly-efficient polarization converter over a broad spectrum by adjusting the real dispersion of Ef. Our design concept provides an effective strategy for customizing novel optoelectronic devices by combining an electrically-tunable 2D material with a functional metasurface.

Keywords