JPhys Materials (Jan 2024)

Impact of hydrogenation on the stability and mechanical properties of amorphous boron nitride

  • Onurcan Kaya,
  • Luigi Colombo,
  • Aleandro Antidormi,
  • Marco A Villena,
  • Mario Lanza,
  • Ivan Cole,
  • Stephan Roche

DOI
https://doi.org/10.1088/2515-7639/ad367b
Journal volume & issue
Vol. 7, no. 2
p. 025010

Abstract

Read online

Interconnect materials with ultralow dielectric constant, and good thermal and mechanical properties are crucial for the further miniaturization of electronic devices. Recently, it has been demonstrated that ultrathin amorphous boron nitride (aBN) films have a very low dielectric constant, high density (above 2.1 g cm ^−3 ), high thermal stability, and mechanical properties. The excellent properties of aBN derive from the nature and degree of disorder, which can be controlled at fabrication, allowing tuning of the physical properties for desired applications. Here, we report an improvement in the stability and mechanical properties of aBN upon hydrogen doping. With the introduction of a Gaussian approximation potential for atomistic simulations, we investigate the changing morphology of aBN with varying H doping concentrations. We found that for 8 at% of H doping, the concentration of sp ^3 -hybridized atoms reaches to a maximum which leads to an improvement of thermal stability and mechanical properties by 20%. These results will be a guideline for experimentalists and process engineers to tune the growth conditions of aBN films for numerous applications.

Keywords