Journal of Defense Analytics and Logistics (Nov 2020)
Comparing greedy constructive heuristic subtour elimination methods for the traveling salesman problem
Abstract
Purpose – This paper aims to define the class of fragment constructive heuristics used to compute feasible solutions for the traveling salesman problem (TSP) into edge-greedy and vertex-greedy subclasses. As these subclasses of heuristics can create subtours, two known methodologies for subtour elimination on symmetric instances are reviewed and are expanded to cover asymmetric problem instances. This paper introduces a third novel subtour elimination methodology, the greedy tracker (GT), and compares it to both known methodologies. Design/methodology/approach – Computational results for all three subtour elimination methodologies are generated across 17 symmetric instances ranging in size from 29 vertices to 5,934 vertices, as well as 9 asymmetric instances ranging in size from 17 to 443 vertices. Findings – The results demonstrate the GT is the fastest method for preventing subtours for instances below 400 vertices. Additionally, a distinction between fragment constructive heuristics and the subtour elimination methodology used to ensure the feasibility of resulting solutions enables the introduction of a new vertex-greedy fragment heuristic called ordered greedy. Originality/value – This research has two main contributions: first, it introduces a novel subtour elimination methodology. Second, the research introduces the concept of ordered lists which remaps the TSP into a new space with promising initial computational results.
Keywords