PLoS ONE (Jan 2017)
Novel PARP-1 Inhibitor Scaffolds Disclosed by a Dynamic Structure-Based Pharmacophore Approach.
Abstract
PARP-1 inhibition has been studied over the last decades for the treatment of various diseases. Despite the fact that several molecules act as PARP-1 inhibitors, a reduced number of compounds are used in clinical practice. To identify new compounds with a discriminatory PARP-1 inhibitory function, explicit-solvent molecular dynamics simulations using different inhibitors bound to the PARP-1 catalytic domain were performed. The representative structures obtained were used to generate structure-based pharmacophores, taking into account the dynamic features of receptor-ligand interactions. Thereafter, a virtual screening of compound databases using the pharmacophore models obtained was performed and the hits retrieved were subjected to molecular docking-based scoring. The drug-like molecules featuring the best ranking were evaluated for their PARP-1 inhibitory activity and IC50 values were calculated for the top scoring docked compounds. Altogether, three new PARP-1 inhibitor chemotypes were identified.