Nanomaterials (Oct 2021)

Flexible Tellurium-Based Electrode for High-Performance Lithium-Tellurium Battery

  • Yan Li,
  • Ye Zhang

DOI
https://doi.org/10.3390/nano11112903
Journal volume & issue
Vol. 11, no. 11
p. 2903

Abstract

Read online

Low-dimensional nanomaterials have attracted considerable attention for next-generation flexible energy devices owing to their excellent electrochemical properties and superior flexibility. Herein, uniform Tellurium nanotubes (Te NTs) were prepared through a facile hydrothermal method, and then a flexible and freestanding electrode was fabricated with Te NTs as active materials and a small amount of nanofibrillated celluloses (NFCs) as a flexible matrix through a vacuum filtration method without adding extra conductive carbon or a binder. The resulting Te-based electrode exhibits a high volumetric capacity of 1512 mAh cm−3 at 200 mA g−1, and delivers admirable cyclic stability (capacity retention of 104% over 300 cycles) and excellent rate performance (833 mAh cm−3 at 1000 mA g−1), which benefits from the unique structure and intrinsically superior conductivity of Te NTs. After bending 50 times, the Te-based electrode delivers a desirable volumetric capacity of 1117 mAh cm−3, and remains 93% of initial capacity after 100 cycles. The results imply that the Te-based electrode exhibits excellent electrochemical properties and superior flexibility simultaneously, which can serve as a potential candidate for the flexible lithium batteries.

Keywords