대한환경공학회지 (May 2023)

Improving Stormwater Runoff Quality using Wasted activated Carbon from a Household Water Purifier

  • Seoyoon Choi,
  • Yu Jeong Shin,
  • Byeongmin Chae,
  • Seoyeon Mo,
  • Moon-Hyon Hwang,
  • Do Gyun Lee

DOI
https://doi.org/10.4491/KSEE.2023.45.5.267
Journal volume & issue
Vol. 45, no. 5
pp. 267 – 273

Abstract

Read online

Objectives To recycle the wasted activated carbon from water purifiers and reuse stormwater runoff, this study evaluated water quality of stormwater runoff with regeneration using granular activated carbon containing commercial activated carbon for water treatment and wasted activated carbon from household water purifiers. Methods The removal of total coliforms, chloride, BOD, T-N, T-P, turbidity, and pH in stormwater runoff were analyzed by down-flow column test using granular activated carbon with varied mixing ratios. In addition, chemical modification with ferrous sulfate and ultrasonic treatment were conducted to improve the removal efficiency of total coliforms, and turbidity. Results and Discussion The optimal mixing ratio of granular activated carbon was 7:3 (GAC:WGAC), which showed high removal efficiency of 88.2% for total coliforms, 70.8% for chloride, 72.6% for BOD, 88.4% for T-N, 50.7% for T-P, and 85.9% for turbidity. The granular activated carbon with surface modification using a 0.2 M FeSO4 solution with ultrasonic treatment demonstrated the highest removal efficiency, with a reduction of 11.8% in total coliforms, 29.2% in chloride, 12.1% in BOD, 20.3% in T-P, and 13.2% in turbidity, while T-N showed a decrease of 19.4% in removal efficiency. Conclusion The granular activated carbon with a 7:3 mixing ratio showed highest removal efficiencies for all water quality parameters, while the total coliforms and turbidity did not meet the water quality standards for reclaimed water. This indicated that further physicochemical surface modification with FeSO4 and ultrasonic treatment was needed to improve the removal performance and meet the water quality standards for reclaimed water. This approach explored in this study using wasted activated carbon should be continued in the area of resource and water circulation to properly utilize resources of wastes.

Keywords