Advances in Civil Engineering (Jan 2020)

Study of the Stability of a Soil-Rock Road Cutting Slope in a Permafrost Region of Hulunbuir

  • Yuxia Zhao,
  • Jun Feng,
  • Kangqi Liu,
  • Hongwei Xu,
  • Liqun Wang,
  • Hongyan Liu

DOI
https://doi.org/10.1155/2020/6701958
Journal volume & issue
Vol. 2020

Abstract

Read online

Due to the threat of global warming and the accelerated melting of glaciers and permafrost, the stability of slopes in permafrost regions has received an increasing amount of attention from scholars. However, research on the stability of soil-rock road cutting slopes in high-latitude and low-altitude permafrost regions of the Greater Khingan Mountains in the Inner Mongolia Autonomous Region has not been reported. For this reason, a study of the stability of a slope with a high ice content in section K105 + 600 to K105 + 700 of National Highway 332 is conducted. The slope is 20 m high and the slope angle is 45°, and the risk of landslides on this slope under the action of freeze-thaw erosion is very high. Because of this, field in situ monitoring, indoor freeze-thaw tests, thermal parameter tests, and ABAQUS numerical simulation models are used to study the stability of the slope. After collecting the continuous temperature, moisture, settlement, and slope deformation data, it was found that the slope was undergoing dynamic changes. The creep of shallow slopes increased with the number of freeze-thaw cycles. After approximately 150 freeze-thaw cycles, the slope safety factor was less than 1, which means that the slope had reached the limit equilibrium state. Therefore, freeze-thaw erosion greatly reduced the stability of the slope. Hence, the stability of the slope must be protected during its entire life cycle. This study provides a reference for the design and construction of road cutting slopes in the high-latitude and low-altitude permafrost regions of the Greater Khingan Mountains.