Atmosphere (Oct 2022)
The Sun and Space Weather
Abstract
The explosion of space weather research since the early 1990s has been partly fueled by the unprecedented, uniform, and extended observations of solar disturbances from space- and ground-based instruments. Coronal mass ejections (CMEs) from closed magnetic field regions and high-speed streams (HSS) from open-field regions on the Sun account for most of the disturbances relevant to space weather. The main consequences of CMEs and HSS are their ability to cause geomagnetic storms and accelerate particles. Particles accelerated by CME-driven shocks can pose danger to humans and their technological structures in space. Geomagnetic storms produced by CMEs and HSS-related stream interaction regions also result in particle energization inside the magnetosphere that can have severe impact on satellites operating in the magnetosphere. Solar flares are another aspect of solar magnetic energy release, mostly characterized by the sudden enhancement in electromagnetic emission at various wavelengths—from radio waves to gamma-rays. Flares are responsible for the sudden ionospheric disturbances and prompt perturbation of Earth’s magnetic field known as magnetic crochet. Nonthermal electrons accelerated during flares can emit intense microwave radiation that can drown spacecraft and radar signals. This review article summarizes major milestones in understanding the connection between solar variability and space weather.
Keywords