Journal of Orthopaedic Surgery and Research (Apr 2022)

Long noncoding RNA PVT1 promotes chondrocyte extracellular matrix degradation by acting as a sponge for miR-140 in IL-1β-stimulated chondrocytes

  • Nan Yao,
  • Sha Peng,
  • Huai Wu,
  • Wengang Liu,
  • Dake Cai,
  • Dane Huang

DOI
https://doi.org/10.1186/s13018-022-03114-4
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background Osteoarthritis (OA) is a common degenerative joint disease, and chondrocyte extracellular matrix (ECM) degradation is one vital pathological feature of OA. Long noncoding RNA (lncRNA), a new kind of gene regulator, plays an important role in pathogenesis of many diseases like OA. Recent studies have confirmed that lncRNA plasmacytoma variant translocation 1 (PVT1) expression was upregulated in OA patients; however, its effect on ECM degradation remained unknown. Methods Cartilage tissue samples were obtained from 6 OA patients admitted in Guangdong Second Traditional Chinese Medicine Hospital. Chondrocytes were isolated and cultured from the collected cartilage tissue. Plasmid construction, RNA interference, cell transfection, fluorescence in situ hybridization (FISH), and pull-down assay were carried out during the research. Results In this study, PVT1 expression was significantly increased in chondrocytes stimulated by interleukin-1β (IL-1β). In addition, inhibition of PVT1 significantly downregulated the increased expressions of ADAM metallopeptidase with thrombospondin type 1 motif-5 (ADAMTS-5) and matrix metalloproteinase-13 (MMP-13) induced by IL-1β. Further investigation revealed that PVT1 was an endogenous sponge RNA, which directly bound to miR-140 and inhibited miR-140 expression. Conclusion To sum up, this study showed that PVT1 promoted expressions of ADAMTS-5 and MMP-13 as a competing endogenous RNA (ceRNA) of miR-140 in OA, which eventually led to aggravation of ECM degradation, thus providing a new and promising strategy for the treatment of OA.

Keywords