Applied Sciences (Oct 2019)

Removal of Different Kinds of Heavy Metals by Novel PPG-nZVI Beads and Their Application in Simulated Stormwater Infiltration Facility

  • Xiaoran Zhang,
  • Lei Yan,
  • Junfeng Liu,
  • Ziyang Zhang,
  • Chaohong Tan

DOI
https://doi.org/10.3390/app9204213
Journal volume & issue
Vol. 9, no. 20
p. 4213

Abstract

Read online

Polyvinyl alcohol and pumice synthetized guar gum-nanoscale zerovalent iron beads (PPG-nZVI beads) were synthesized, and their adsorption towards Pb2+, Cu2+, and Zn2+ ions was evaluated. The adsorption kinetics of metal ions was well fitted by the pseudo-second-order model. The adsorption rate decreased followed in the order of Cu2+ > Pb2+ > Zn2+, consistent with the reduction potential of the ions. The sorption isotherm was well fitted by Langmuir model. The maximum adsorption capacity decreased followed in the order of Pb2+ > Cu2+ > Zn2+, which suggested that the strength of covalent bonds between the metal ions and surface functional groups substituted to the beads is one of the major factors in the adsorption process. Adsorption increased with the increase of pH and the largest sorption occurred at pH 5.5, while ionic strength did not significantly influence the adsorption process. The application of PPG-nZVI beads as filling materials in the simulated stormwater infiltration facility shows good removal efficiency in treating the contaminated water containing Pb2+, Cu2+, Zn2+, Cr6+, and Cd2+ and the removal rate was more than 65% at least. The results indicated that the PPG-nZVI beads could be applied as promising sorbents for purification of heavy metal contaminated water.

Keywords