High-Linearity Dual-Parallel Mach–Zehnder Modulators in Thin-Film Lithium Niobate
Tao Yang,
Lutong Cai,
Zhanhua Huang,
Lin Zhang
Affiliations
Tao Yang
State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-Electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-Electronics Technologies and Devices, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Lutong Cai
State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-Electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-Electronics Technologies and Devices, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Zhanhua Huang
State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-Electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-Electronics Technologies and Devices, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Lin Zhang
State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-Electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-Electronics Technologies and Devices, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Microwave photonic (MWP) systems are inseparable from conversions of microwave electrical signals into optical signals, and their performances highly depend on the linearity of electro-optic modulators. Thin-film lithium niobate (TFLN) is expected to be an ideal platform for future microwave photonic systems due to its compact size, low optical loss, linear electro-optic effect, and high bandwidth. In this paper, we propose a TFLN modulator with a low voltage–length product (VπL) of 1.97 V·cm and an ultra-high-linearity carrier-to-distortion ratio (CDR) of 112.33 dB, using a dual-parallel Mach–Zehnder interferometer configuration. It provides an effective approach to fully suppress the third-order intermodulation distortions (IMD3), leading to 76 dB improvement over a single Mach–Zehnder modulator (MZM) in TFLN. The proposed TFLN modulator would enable a wide variety of applications in integrated MWP systems with large-scale integration, low power consumption, low optical loss, and high bandwidth.