Discover Oncology (Jun 2024)
Exploring the therapeutic mechanisms of Coptidis Rhizoma in gastric precancerous lesions: a network pharmacology approach
Abstract
Abstract Background Gastric precancerous lesions are a critical stage in the development of gastric cancer or gastric adenocarcinoma, and their outcome plays an important role in the malignant progression of gastric cancer. Coptidis Rhizoma has a good effect on Gastric precancerous lesions. However, the specific mechanisms of its action remain incompletely elucidated. Methods Network pharmacology and molecular docking techniques were used to explore the active ingredients and molecular mechanism of Coptidis Rhizoma in treating gastric precancerous lesions. The active compounds of Coptidis Rhizoma and their potential gastric precancerous lesions related targets were obtained from TCMSP, GeneCards, and OMIM databases. An interaction network based on protein–protein interactions (PPIs) was constructed to visualize the interactions between hub genes. Analysis of GO enrichment and KEGG pathway were conducted using the DAVID database. An investigation of interactions between active compounds and potential targets was carried out by molecular docking. Finally, animal experiments were conducted to verify the effect and mechanism of Coptidis Rhizoma in treating precancerous lesions of gastric cancer. Results A total of 11 active compounds and 95 anti-gastric precancerous lesions targets of Coptidis Rhizoma were screened for analysis. GO enrichment analysis showed that the mechanism of Coptidis Rhizoma acting on gastric precancerous lesions involves gene expression regulation and apoptosis regulation. KEGG pathway enrichment analysis showed that Coptidis Rhizoma against gastric precancerous lesions involving the AKT /HIF-1α/VEGF signalling pathway. Molecular docking simulations indicated potential interactions between these compounds and core targets involved in anti-gastric precancerous lesions activity. In addition, it was confirmed in vivo that Berberine and Coptidis Rhizoma may reverse atrophy and potential intestinal metaplasia by inhibiting the expression of p-AKT, HIFA, and VEGF. Conclusion Bioactive compounds in Coptidis Rhizoma have the potential to prevent atrophy and intestinal metaplasia. These compounds function by regulating the proteins implicated in AKT /HIF-1α/VEGF signalling pathways that are crucial in gastric epithelial cell differentiation, proliferation and maturation.
Keywords