Opto-Electronic Advances (Dec 2023)
Deep learning enabled single-shot absolute phase recovery in high-speed composite fringe pattern profilometry of separated objects
Abstract
A recent article in the Opto-Electronic Advances (OEA) journal from Prof. Qian Chen and Prof. Chao Zuo’s group introduced a new and efficient 3D imaging system that captures high-speed images using deep learning-enabled fringe projection profilometry (FPP). In this News & Views article, we explore potential avenues for future advancements, including expanding the measurement range through an extended number-theoretical approach, enhancing quality through the incorporation of horizontal fringes, and integrating data from other modalities to broaden the system's applications.