Scientifica (Jan 2012)
The BRCA1 Breast Cancer Suppressor: Regulation of Transport, Dynamics, and Function at Multiple Subcellular Locations
Abstract
Inherited mutations in the BRCA1 gene predispose to a higher risk of breast/ovarian cancer. The BRCA1 tumor suppressor is a 1863 amino acid protein with multiple protein interaction domains that facilitate its roles in regulating DNA repair and maintenance, cell cycle progression, transcription, and cell survival/apoptosis. BRCA1 was first identified as a nuclear phosphoprotein, but has since been shown to contain different transport sequences including nuclear export and nuclear localization signals that enable it to shuttle between specific sites within the nucleus and cytoplasm, including DNA repair foci, centrosomes, and mitochondria. BRCA1 nuclear transport and ubiquitin E3 ligase enzymatic activity are tightly regulated by the BRCA1 dimeric binding partner BARD1 and further modulated by cancer mutations and diverse signaling pathways. This paper will focus on the transport, dynamics, and multiple intracellular destinations of BRCA1 with emphasis on how regulation of these events has impact on, and determines, a broad range of important cellular functions.