Sensors (Jan 2024)

RFID Adaptive Parallel Response Collision Tree Algorithm Based on Lock-Bit

  • Xuan Luo,
  • Xiaolin Jia,
  • Yajun Gu

DOI
https://doi.org/10.3390/s24020389
Journal volume & issue
Vol. 24, no. 2
p. 389

Abstract

Read online

This paper proposes the Lock-Position-Based RFID Adaptive Parallel Collision Tree (LAPCT) algorithm to address the issues of excessive time slots required in the identification process of collision tree algorithms for multiple tags and the high communication complexity between the reader and multiple tags. The LAPCT algorithm adopts a single-query multiple-response mechanism and dynamically divides the response sub-cycle numbers in the identification cycle based on an adaptive strategy. It uses Manchester encoding to lock collision positions and generate a common query prefix, effectively reducing the number of reader queries. This reduction in queries decreases the total number of required time slots and transmitted bits during the reader–tag communication process, thereby improving the efficiency of multiple tag recognition. Theoretical and simulation experiments demonstrate that compared to similar algorithms, the LAPCT algorithm achieves a maximum reduction of 37% in total time slots required, a maximum improvement of 30% in recognition efficiency, and a maximum reduction of 90% in communication complexity. Furthermore, with an increase in the number of tags, the performance advantages of the LAPCT algorithm become more pronounced, making it suitable for large-scale tag scenarios.

Keywords