Translational Oncology (Aug 2021)
DNA damage response- and JAK-dependent regulation of PD-L1 expression in head and neck squamous cell carcinoma (HNSCC) cells exposed to 5-fluorouracil (5-FU)
Abstract
Objectives: The immune checkpoint molecule PD-L1 (CD274) is a crucial regulator of the tumor immune response. Its expression has been reported in the therapeutic context in Head and Neck Squamous Cell Carcinoma (HNSCC), but it remains unclear how therapeutically approved molecules regulate PD-L1 expression in HNSCC cells. Materials and methods: Three HNSCC cell lines (BICR6, PE/CA-PJ34 and PE/CA-PJ41) were used to analyze PD-L1 expression by immunoblotting, immunofluorescence and QPCR. Freely-available single cell RNAseq data from HNSCC were also used. Results: 5-Fluorouracil (5-FU) increased the expression of PD-L1 with high efficacy in HNSCC cells. Single cell RNAseq data suggested the specificity of the regulation of PD-L1 in this context. The effect of 5-FU on PD-L1 expression was related to its genotoxic effect and was prevented by extracellular application of thymidine or using a chemical inhibitor of the DNA damage Response kinases ATM/ATR. We found that the effect of 5-FU was additive or synergistic with IFN-γ, the canonical inducer of PD-L1 in epithelial cells. QPCR analysis confirmed this finding and identified JAK-dependent transcriptional activation of PD-L1/CD274 as the underlying mechanism. The induction of PD-L1 by 5-FU was partially prevented by Epidermal Growth Factor Receptor (EGFR) inhibition with cetuximab. Conclusion: Our study highlights the specific DNA Damage Response- and JAK- dependent induction of PD-L1 by 5-FU in HNSCC cells. This induction is regulated by the cytokine context and is potentially therapeutically actionable.