Metals (Jul 2021)

Enhancement of Corrosion Properties of Fe-18Cr-9Mn-5.5Ni-0.3(C + N) Austenitic Stainless Steels by Carbon Alloying

  • Daun Byeon,
  • Heon-Young Ha,
  • Sung-Dae Kim,
  • Hyo-Haeng Jo,
  • JinJong Lee,
  • Jae Hoon Jang,
  • Tae-Ho Lee,
  • Jong-Ho Shin,
  • Namhyun Kang

DOI
https://doi.org/10.3390/met11071124
Journal volume & issue
Vol. 11, no. 7
p. 1124

Abstract

Read online

In this study, the resistance to pitting corrosion of Fe-18Cr-9Mn-5.5Ni-0.3(C + N) austenitic stainless steel γ-SSs (in wt%) with different C/(C + N) ratios (0.02, 0.29, and 0.60) was evaluated. It was found to be difficult to form a γ-matrix without precipitation, because the Cr23C6 precipitation rate in the γ-SSs with the C/(C + N) value of 0.60 was too fast. Thus, it was recommended to maintain the C/(C + N) ratio below 0.6 in Fe-18Cr-9Mn-5.5Ni-0.3(C + N) γ-SSs. As a result of the potentiodynamic polarization tests, the γ-SS with a C/(C + N) ratio of 0.29 showed the highest resistance to pitting corrosion, and the resistance level of this alloy was superior to that of the AISI 304 γ-SS. Analysis of the passive film and matrix dissolution rates revealed that a higher C/(C + N) ratio of γ-SS increased the protective ability of the passive film and decreased the growth rate of the pits. Therefore, it could be concluded that partial substitution of C for N was advantageous for improving the pitting corrosion resistance of Fe-18Cr-9Mn-5.5Ni-0.3(C + N) γ-SSs, as long as C and N existed in a solid solution state.

Keywords