Hierarchically mesoporous carbon spheres coated with a single atomic Fe–N–C layer for balancing activity and mass transfer in fuel cells
Chengyong Shu,
Qiang Tan,
Chengwei Deng,
Wei Du,
Zhuofan Gan,
Yan Liu,
Chao Fan,
Hui Jin,
Wei Tang,
Xiao‐dong Yang,
Xiaohua Yang,
Yuping Wu
Affiliations
Chengyong Shu
School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an China
Qiang Tan
State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering Xi'an Jiaotong University Xi'an China
Chengwei Deng
State Key Laboratory of Space Power‐Sources Technology Shanghai Institute of Space Power Sources Shanghai China
Wei Du
State Key Laboratory of Space Power‐Sources Technology Shanghai Institute of Space Power Sources Shanghai China
Zhuofan Gan
School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an China
Yan Liu
State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering Xi'an Jiaotong University Xi'an China
Chao Fan
State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an China
Hui Jin
State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an China
Wei Tang
School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an China
Xiao‐dong Yang
College of Materials Science and Engineering Huaqiao University Xiamen China
Xiaohua Yang
Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang China
Yuping Wu
State Key Laboratory of Materials‐Oriented Chemical Engineering, School of Energy Science and Engineering and Institute of Advanced Materials Nanjing Tech University Nanjing China
Abstract Novel cost‐effective fuel cells have become more attractive due to the demands for rare and expensive platinum‐group metal (PGM) catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction (ORR). The high‐cost PGM catalyst in fuel cells can be replaced by Earth‐abundant transition‐metal‐based catalysts, that is, an Fe–N–C catalyst, which is considered one of the most promising alternatives. However, the performance of the Fe–N–C catalyst is hindered by the low catalytic activity and poor stability, which is caused by insufficient active sites and the lack of optimization of the triple‐phase interface for mass transportation. Herein, a novel Fe–N–C catalyst consisting of mono‐dispersed hierarchically mesoporous carbon sphere cores and single Fe atom‐dispersed functional shells are presented. The synergistic effect between highly dispersed Fe‐active sites and well‐organized porous structures yields the combination of high ORR activity and high mass transfer performance. The half‐wave potential of the catalyst in 0.1 M H2SO4 is 0.82 V versus reversible hydrogen electrode, and the peak power density is 812 mW·cm−2 in H2–O2 fuel cells. Furthermore, it shows superior methanol tolerance, which is almost immune to methanol poisoning and generates up to 162 mW·cm−2 power density in direct methanol fuel cells.