Scientific Reports (Dec 2022)
Enhancing photon generation rate with broadband room-temperature quantum memory
Abstract
Abstract Photons with high generation rate is one of the essential resources for quantum communication, quantum computing and quantum metrology. Due to the naturally memory-built-in feature, the memory-based photon source is a promising route towards large-scale quantum information processing. However, such photon sources are mostly implemented in extremely low-temperature ensembles or isolated systems, limiting its physical scalability. Here we realize a single-photon source based on a far off-resonance Duan-Lukin-Cirac-Zoller quantum memory at broadband and room-temperature regime. By harnessing high-speed feedback control and repeat-until-success write process, the photon generation rate obtains considerable enhancement up to tenfold. Such a memory-enhanced single-photon source, based on the broadband room-temperature quantum memory, suggests a promising way for establishing large-scale quantum memory-enabled network at ambient condition.