Abstract Low‐temperature energy harvest, delivery, and utilization pose significant challenges for thermal management in extreme environments owing to heat loss during transport and difficulty in temperature control. Herein, we propose a light‐driven photo‐energy delivery device with a series of photo‐responsive alkoxy‐grafted azobenzene‐based phase‐change materials (a‐g‐Azo PCMs). These a‐g‐Azo PCMs store and release crystallization and isomerization enthalpies, reaching a high energy density of 380.76 J/g even at a low temperature of −63.92 °C. On this basis, we fabricate a novel three‐branch light‐driven microfluidic control device for distributed energy recycling that achieves light absorption, energy storage, controlled movement, and selective release cyclically over a wide range of temperatures. The a‐g‐Azo PCMs move remote‐controllably in the microfluidic device at an average velocity of 0.11–0.53 cm/s owing to the asymmetric thermal expansion effect controlled by the temperature difference. During movement, the optically triggered heat release of a‐g‐Azo PCMs achieves a temperature difference of 6.6 °C even at a low temperature of −40 °C. These results provide a new technology for energy harvest, delivery, and utilization in low‐temperature environments via a remote manipulator.