Materials (Apr 2022)

Spring Back Behavior of Large Multi-Feature Thin-Walled Part in Rigid-Flexible Sequential Loading Forming Process

  • Yanfeng Zhang,
  • Lihui Lang,
  • Yao Wang,
  • Haizhou Chen,
  • Jianning Du,
  • Zhihui Jiao,
  • Lin Wang

DOI
https://doi.org/10.3390/ma15072608
Journal volume & issue
Vol. 15, no. 7
p. 2608

Abstract

Read online

The spring back behavior of large complex multi-feature parts in the rigid-flexible sequential forming process has certain special characteristics. The hydraulic pressure loading locus has a significant influence on the spring back of small features of the part, and the applicability of the spring back prediction model to the process needs further research. Therefore, this paper takes the large aluminum alloy inner panel of an automobile as the research object, and the spring back model and the influence laws of the hydraulic pressure loading locus are revealed by combining the theoretical analysis and numerical simulation with the process tests. Meanwhile, based on the theoretical prediction and experimental results, the spring back compensation of the complex inner panel is carried out. Results show that the hardening model has a greater impact on the accuracy of spring back prediction than the yield criterion does, and the prediction accuracy of Barlat’89 + Yoshida–Uemori mixed hardening model is the highest. Finally, the optimized loading locus of hydraulic pressure is obtained, and the accuracy results of the compensated parts verify the accuracy of the analysis model.

Keywords