Metals (Feb 2025)

Fluidity of Aluminium Foundry Alloys for Thin Wall Castings: Designing an Operating Methodology

  • Osama Asghar,
  • Manel da Silva,
  • Raquel Busqué,
  • Franco Bonollo

DOI
https://doi.org/10.3390/met15030229
Journal volume & issue
Vol. 15, no. 3
p. 229

Abstract

Read online

Aluminium thin wall castings are gaining wide acceptance in the automotive industry because of their incomparable design flexibility and higher mechanical properties. For these thin wall castings, fluidity plays a vital role in determining the quality of the final product. The aim of this work is to provide a detailed insight into the development of a multi-channel testing methodology to evaluate the fluidity of aluminium foundry alloys for thin wall applications. AlSi10MnMg foundry alloy has been used to conduct a series of experiments with the aim of designing operative protocols that achieve higher repeatability of the results. The fluidity of the investigated alloy was observed in channels of various cross-sections at three different pouring temperatures, i.e., 680, 710, and 740 °C. The obtained results show that experiments conducted following closely the designed operative protocols, result in achieving higher repeatability. It was also observed that by increasing the pouring temperature, the fluidity and repeatability of the alloy increased greatly. The 3D transient simulations were conducted by means of Altair® Inspire™ Cast 2021.2 software to study the molten metal behaviour, i.e., solidification temperature and time at the end of each strip for the studied pouring temperatures. The results further reveal that the design methodology, if executed with intrinsic accuracy and precision, will provide a reliable pathway to determine the fluidity of aluminium alloys for various industrial applications.

Keywords