NeuroImage (Dec 2021)
Trial and error: A hierarchical modeling approach to test-retest reliability
Abstract
The concept of test-retest reliability indexes the consistency of a measurement across time. High reliability is critical for any scientific study, but specifically for the study of individual differences. Evidence of poor reliability of commonly used behavioral and functional neuroimaging tasks is mounting. Reports on low reliability of task-based fMRI have called into question the adequacy of using even the most common, well-characterized cognitive tasks with robust population-level effects, to measure individual differences. Here, we lay out a hierarchical framework that estimates reliability as a correlation divorced from trial-level variability, and show that reliability tends to be underestimated under the conventional intraclass correlation framework through summary statistics based on condition-level modeling. In addition, we examine how reliability estimation between the two statistical frameworks diverges and assess how different factors (e.g., trial and subject sample sizes, relative magnitude of cross-trial variability) impact reliability estimates. As empirical data indicate that cross-trial variability is large in most tasks, this work highlights that a large number of trials (e.g., greater than 100) may be required to achieve precise reliability estimates. We reference the tools TRR and 3dLMEr for the community to apply trial-level models to behavior and neuroimaging data and discuss how to make these new measurements most useful for future studies.