International Journal of Molecular Sciences (Jul 2023)

Protective Effect of Water-Soluble Acacetin Prodrug on APAP-Induced Acute Liver Injury Is Associated with Upregulation of PPARγ and Alleviation of ER Stress

  • Jiaen Miao,
  • Shujun Yao,
  • Hao Sun,
  • Zhe Jiang,
  • Zhe Gao,
  • Jia Xu,
  • Kuihao Chen

DOI
https://doi.org/10.3390/ijms241411320
Journal volume & issue
Vol. 24, no. 14
p. 11320

Abstract

Read online

A water-soluble acacetin prodrug has been synthesized and reported by our group previously. Acetaminophen (APAP) overdose is a leading cause of acute liver injury. We found that subcutaneous injection of acacetin prodrug (5, 10, 20 mg/kg) decreased serum ALT, AST, and ALP, corrected the abnormal MDA and GSH in liver, and improved intrahepatic hemorrhage and destruction of liver structures in APAP (300 mg/kg)-treated mice. Molecular mechanism analysis revealed that the expressions of endoplasmic reticulum (ER) stress markers ATF6, CHOP, and p-PERK, apoptosis-related protein BAX, and cleaved caspase 3 were decreased by acacetin in a dose-dependent manner in vivo and in vitro. Moreover, via the acacetin-upregulated peroxisome-proliferator-activated receptor gamma (PPARγ) of HepG2 cells and liver, the suppressive effect of acacetin on ER stress and apoptosis was abolished by PPARγ inhibitor (GW9662) or PPARγ-siRNA. Molecular docking revealed that acacetin can bind to three active pockets of PPARγ, mainly by hydrogen bond. Our results provide novel evidence that acacetin prodrug exhibits significant protective effect against APAP-induced liver injury by targeting PPARγ, thereby suppressing ER stress and hepatocyte apoptosis. Acacetin prodrug is likely a promising new drug candidate for treating patients with acute liver injury induced by APAP.

Keywords