Frontiers in Plant Science (Oct 2016)

DArT Markers Effectively Target Gene Space in the Rye Genome

  • Piotr Gawronski,
  • Magdalena Pawelkowicz,
  • Katarzyna Tofil,
  • Grzegorz Uszynski,
  • Saida Sharifova,
  • Saida Sharifova,
  • Shivaksh Ahluwalia,
  • Shivaksh Ahluwalia,
  • Tyrka Miroslaw,
  • Maria Wedzony,
  • Andrzej Kilian,
  • Hanna Bolibok-Bragoszewska

DOI
https://doi.org/10.3389/fpls.2016.01600
Journal volume & issue
Vol. 7

Abstract

Read online

Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.

Keywords