Journal of Inequalities and Applications (Feb 2020)

A sharp upper bound on the spectral radius of a nonnegative k-uniform tensor and its applications to (directed) hypergraphs

  • Chuang Lv,
  • Lihua You,
  • Xiao-Dong Zhang

DOI
https://doi.org/10.1186/s13660-020-2305-2
Journal volume & issue
Vol. 2020, no. 1
pp. 1 – 16

Abstract

Read online

Abstract In this paper, we obtain a sharp upper bound on the spectral radius of a nonnegative k-uniform tensor and characterize when this bound is achieved. Furthermore, this result deduces the main result in [X. Duan and B. Zhou, Sharp bounds on the spectral radius of a nonnegative matrix, Linear Algebra Appl. 439:2961–2970, 2013] for nonnegative matrices; improves the adjacency spectral radius and signless Laplacian spectral radius of a uniform hypergraph for some known results in [D.M. Chen, Z.B. Chen and X.D. Zhang, Spectral radius of uniform hypergraphs and degree sequences, Front. Math. China 6:1279–1288, 2017]; and presents some new sharp upper bounds for the adjacency spectral radius and signless Laplacian spectral radius of a uniform directed hypergraph. Moreover, a characterization of a strongly connected k-uniform directed hypergraph is obtained.

Keywords