Systems (Aug 2025)

Development of an Automotive Electronics Internship Assistance System Using a Fine-Tuned Llama 3 Large Language Model

  • Ying-Chia Huang,
  • Hsin-Jung Tsai,
  • Hui-Ting Liang,
  • Bo-Siang Chen,
  • Tzu-Hsin Chu,
  • Wei-Sho Ho,
  • Wei-Lun Huang,
  • Ying-Ju Tseng

DOI
https://doi.org/10.3390/systems13080668
Journal volume & issue
Vol. 13, no. 8
p. 668

Abstract

Read online

This study develops and validates an artificial intelligence (AI)-assisted internship learning platform for automotive electronics based on the Llama 3 large language model, aiming to enhance pedagogical effectiveness within vocational training contexts. Addressing critical issues such as the persistent theory–practice gap and limited innovation capability prevalent in existing curricula, we leverage the natural language processing (NLP) capabilities of Llama 3 through fine-tuning based on transfer learning to establish a specialized knowledge base encompassing fundamental circuit principles and fault diagnosis protocols. The implementation employs the Hugging Face Transformers library with optimized hyperparameters, including a learning rate of 5 × 10−5 across five training epochs. Post-training evaluations revealed an accuracy of 89.7% on validation tasks (representing a 12.4% improvement over the baseline model), a semantic comprehension precision of 92.3% in technical question-and-answer assessments, a mathematical computation accuracy of 78.4% (highlighting this as a current limitation), and a latency of 6.3 s under peak operational workloads (indicating a system bottleneck). Although direct trials involving students were deliberately avoided, the platform’s technical feasibility was validated through multidimensional benchmarking against established models (BERT-base and GPT-2), confirming superior domain adaptability (F1 = 0.87) and enhanced error tolerance (σ2 = 1.2). Notable limitations emerged in numerical reasoning tasks (Cohen’s d = 1.15 compared to human experts) and in real-time responsiveness deterioration when exceeding 50 concurrent users. The study concludes that Llama 3 demonstrates considerable promise for automotive electronics skills development. Proposed future enhancements include integrating symbolic AI modules to improve computational reliability, implementing Kubernetes-based load balancing to ensure latency below 2 s at scale, and conducting longitudinal pedagogical validation studies with trainees. This research provides a robust technical foundation for AI-driven vocational education, especially suited to mechatronics fields that require close integration between theoretical knowledge and practical troubleshooting skills.

Keywords