AgriEngineering (Apr 2022)

Development and Modeling of an Onion Harvester with an Automated Separation System

  • Michel N. Erokhin,
  • Alexey S. Dorokhov,
  • Alexey V. Sibirev,
  • Alexandr G. Aksenov,
  • Maxim A. Mosyakov,
  • Nikolay V. Sazonov,
  • Maria M. Godyaeva

DOI
https://doi.org/10.3390/agriengineering4020026
Journal volume & issue
Vol. 4, no. 2
pp. 380 – 399

Abstract

Read online

One of the most important problems during the implementation of any technology is to reduce labor costs, energy, and resource conservation while increasing the yield of cultivated crops and, as a result, reducing the cost of production. Despite a significant amount of scientific research devoted to the problem of energy and resource conservation in the cultivation and harvesting of agricultural crops and the development of mechanization tools that ensure the high-quality performance of technological operations, there remain issues that have not been fully resolved to date. In addition, not all the results of known theoretical and experimental studies can be directly applied to intensify the process of harvesting root crops since the quality indicators of marketable products depend on the type and technological parameters of the separating working bodies. This article presents the design of a rod elevator with an adjustable angle of inclination of the web, which reduces damage to commercial products of root crops and bulbs with maximum completeness of separation. A laboratory facility has been developed to substantiate the design and technological parameters of a separating system with an adjustable web inclination angle. Based on the results of theoretical and experimental studies, a machine for harvesting onions with an adjustable blade inclination angle has been developed, which provides an increase in the quality indicators of onion harvesting at optimal values of the parameters: (1) translational speed of movement of the rod elevator with an adjustable web inclination angle of 1.7 m/s with a 98.4% completeness of separation and 1.7% damage to the bulbs; (2) translational speed of the movement of the machine for harvesting root crops and onions 1.0 m/s with a 98.5% separation completeness and 1.1% damage to the bulbs; (3) digging depth of the digging plowshare equal to 0.02 m, with an onion heap separation completeness of more than 98% and product damage of less than 1.4%. The results of theoretical and experimental studies of a rod elevator to substantiate the design and technological parameters during its interaction with a heap of onion are presented. Basic design and technological parameters of the studied rod elevator are substantiated, namely, the distance S1 of the movement of the rod of the actuators, the angle a1 of the longitudinal inclination of the surface of the rod elevator relative to the horizon, and differential equations of motion of the onion-sowing pile element on the surface of the rod elevator with an adjustable angle of inclination of the web.

Keywords