Agronomy (Dec 2023)
Effects of Different Exogenous Organic Substrates on Soil Carbon and Nitrogen Mineralization and Their Priming Effects
Abstract
The input of exogenous organic matter could affect the transformation of soil carbon (C) and nitrogen (N), and their C- and N-priming effects (CPE and NPE) play a key role in the balance of soil C and N. However, little is known about how the interaction effect between straw and straw biochar regulates CPE and NPE. Therefore, we conducted a 90-day incubation experiment, which included five treatments: no straw and straw biochar (CK), 1.5% straw (S), 0.53% straw biochar (B), 1.5% straw + 0.53% straw biochar (SB), and 1.5% straw + 1.06% straw biochar (SB1). Our findings revealed that cumulative soil CO2 emissions were increased by 95.52–216.53% through the short-term input of exogenous organic matter input; however, this trend gradually weakened with decreasing dissolved organic C (DOC) content. The cumulative NPE generated by the addition of exogenous organic matter was much smaller than the cumulative CPE. Under the B and S treatments, the cumulative CPE and NPE were negative throughout the entire incubation period. The SB treatment remarkably boosted the microbial biomass nitrogen (MBN) content; however, the SB1 treatment was more effective in inhibiting soil C and N mineralization processes than SB treatment. Moreover, the cumulative CPE and NPE were mainly regulated by N. We conclude that the combination of straw and straw biochar preferentially stimulated soil C mineralization, but that this effect decreased with time, which may be due to the consumption of labile DOC caused by the initial positive CPE, while soil N mineralization had a lag effect.
Keywords