Geo-spatial Information Science (Mar 2024)
Assessment of underlying topography and forest height inversion based on TomoSAR methods
Abstract
ABSTRACTDue to the strong penetrability, long-wavelength synthetic aperture radar (SAR) can provide an opportunity to reconstruct the three-dimensional structure of the penetrable media. SAR tomography (TomoSAR) technology can resynthesize aperture perpendicular to the slant-range direction and then obtain the tomographic profile consisting of power distribution of different heights, providing a powerful technical tool for reconstructing the three-dimensional structure of the penetrable ground objects. As an emerging technology, it is different from the traditional interferometric SAR (InSAR) technology and has advantages in reconstructing the three-dimensional structure of the illuminated media. Over the past two decades, many TomoSAR methods have been proposed to improve the vertical resolution, aiming to distinguish the locations of different scatters in the unit pixel. In order to cope with the forest mission of European Space Agency (ESA) that is designed to provide P-band SAR measurements to determine the amount of biomass and carbon stored in forests, it is necessary to systematically evaluate the performance of forest height and underlying topography inversion using TomoSAR technology. In this paper, we adopt three typical algorithms, namely, Capon, Multiple Signal Classification (MUSIC), and Compressed Sensing (CS), to evaluate the performance in forest height and underlying topography inversion. The P-band airborne full-polarization (FP) SAR data of Lopè National Park in the AfriSAR campaign implemented by ESA in 2016 is adopted to verify the experiment. Furthermore, we explore the effects of different baseline designs and filter methods on the reconstruction of the tomographic profile. The results show that a better tomographic profile can be obtained by using Hamming window filter and Capon algorithm in uniform baseline distribution and a certain number of acquisitions. Compared with LiDAR results, the root-mean-square error (RMSE) of forest height and underlying topography obtained by Capon algorithm is 2.17 m and 1.58 m, which performs the best among the three algorithms.
Keywords