PeerJ (Sep 2024)
Enhancing genetic diversity in Pelargonium: insights from crossbreeding in the gene pool
Abstract
This study aimed to enrich the Pelargonium gene pool through crosses and assess genetic variation among 56 genotypes from five Pelargonium species. Seventeen morphological descriptors were used, and NTSYS-pc software was employed to define genetic relationships, and a UPGMA-generated dendrogram reflected these relationships. Moreover, principal component analysis (PCA) was performed to determine which parameter was more effective in explaining variation. Results showed wide variation in genetic similarity rates, with the most similar genotypes being P. zonale ‘c1’ and a hybrid of P. zonale ‘c1’ x P. zonale ‘c2’ (90% similarity). According to the dendrogram results, it was observed that the genotypes were distributed in six clusters. In contrast, the most distant genotypes were P. zonale ‘c11’ and a hybrid of P. zonale ‘c10’ x P. zonale ‘c11’ (0.04% similarity). Hybrids from the female parent P. x hortorum ‘c1’ exhibited unique placement in the dendrogram. In the crossing combinations with this genotype, the individuals obtained in terms of flower type, flower color, flower size, bud size, early flowering, and leaf size characters showed different characteristics from the parents. Surprising outcomes in flower types, colors, and shapes contributed to gene pool enrichment, promising increased breeding variation success. The study holds practical implications for commercial breeding and serves as a valuable guide for future research endeavors.
Keywords