Biosensors (Sep 2024)

NIR-Sensitive Squaraine Dye—Peptide Conjugate for Trypsin Fluorogenic Detection

  • Priyanka Balyan,
  • Shekhar Gupta,
  • Sai Kiran Mavileti,
  • Shyam S. Pandey,
  • Tamaki Kato

DOI
https://doi.org/10.3390/bios14100458
Journal volume & issue
Vol. 14, no. 10
p. 458

Abstract

Read online

Trypsin enzyme has gained recognition as a potential biomarker in several tumors, such as colorectal, gastric, and pancreatic cancer, highlighting its importance in disease diagnosis. In response to the demand for rapid, cost-effective, and real-time detection methods, we present an innovative strategy utilizing the design and synthesis of NIR-sensitive dye–peptide conjugate (SQ-3 PC) for the sensitive and selective monitoring of trypsin activity by fluorescence ON/OFF sensing. The current research deals with the design and synthesis of three unsymmetrical squaraine dyes SQ-1, SQ-2, and SQ-3 along with a dye–peptide conjugate SQ-3-PC as a trypsin-specific probe followed by their photophysical characterizations. The absorption spectral investigation conducted on both the dye alone and its corresponding dye–peptide conjugates in water, utilizing SQ-3 and SQ-3 PC respectively, reveals enhanced dye aggregation and pronounced fluorescence quenching compared to observations in DMSO solution. The absorption spectral investigation conducted on dye only and corresponding dye–peptide conjugates in water utilizing SQ-3 and SQ-3 PC, respectively, reveals not only the enhanced dye aggregation but also pronounced fluorescence quenching compared to that observed in the DMSO solution. The trypsin-specific probe SQ-3 PC demonstrated a fluorescence quenching efficiency of 61.8% in water attributed to the combined effect of aggregation-induced quenching (AIQ) and fluorescence resonance energy transfer (FRET). FRET was found to be dominant over AIQ. The trypsin-mediated hydrolysis of SQ-3 PC led to a rapid and efficient recovery of quenched fluorescence (5-fold increase in 30 min). Concentration-dependent changes in the fluorescence at the emission maximum of the dyes reveal that SQ-3 PC works as a trypsin enzyme-specific fluorescence biosensor with linearity up to 30 nM along with the limit of detection and limit of quantification of 1.07 nM and 3.25 nM, respectively.

Keywords