Journal of Neuroinflammation (Mar 2009)
Ciliary neurotrophic factor (CNTF) plus soluble CNTF receptor α increases cyclooxygenase-2 expression, PGE<sub>2 </sub>release and interferon-γ-induced CD40 in murine microglia
Abstract
Abstract Background Ciliary neurotrophic factor (CNTF) has been regarded as a potent trophic factor for motor neurons. However, recent studies have shown that CNTF exerts effects on glial cells as well as neurons. For instance, CNTF stimulates astrocytes to secrete FGF-2 and rat microglia to secrete glial cell line-derived neurotrophic factor (GDNF), which suggest that CNTF exerts effects on astrocytes and microglia to promote motor neuron survival indirectly. As CNTF is structurally related to IL-6, which can stimulate immune functions of microglia, we hypothesized that CNTF might exert similar effects. Methods We performed 2-D and 1-D proteomic experiments with western blotting and flow cytometry to examine effects of CNTF on primary microglia derived from neonatal mouse brains. Results We show that murine microglia express CNTF receptor α (CNTFRα), which can be induced by interferon-γ (IFNγ). Whereas IL-6 activated STAT-3 and ERK phosphorylation, CNTF did not activate these pathways, nor did CNTF increase p38 MAP kinase phosphorylation. Using 2-D western blot analysis, we demonstrate that CNTF induced the dephosphorylation of a set of proteins and phosphorylation of a different set. Two proteins that were phosphorylated upon CNTF treatment were the LYN substrate-1 and β-tubulin 5. CNTF weakly stimulated microglia, whereas a stronger response was obtained by adding exogenous soluble CNTFRα (sCNTFRα) as has been observed for IL-6. When used in combination, CNTF and sCNTFRα collaborated with IFNγ to increase microglial surface expression of CD40 and this effect was quite pronounced when the microglia were differentiated towards dendritic-like cells. CNTF/sCNTFRα complex, however, failed to increase MHC class II expression beyond that induced by IFNγ. The combination of CNTF and sCNTFRα, but not CNTF alone, enhanced microglial Cox-2 protein expression and PGE2 secretion (although CNTF was 30 times less potent than LPS). Surprisingly, Cox-2 production was enhanced 2-fold, rather than being inhibited, upon addition of a gp130 blocking antibody. Conclusion Our studies indicate that CNTF can activate microglia and dendritic-like microglia similar to IL-6; however, unlike IL-6, CNTF does not stimulate the expected signaling pathways in microglia, nor does it appear to require gp130.