Journal of High Energy Physics (Mar 2020)
Modeling of GERDA Phase II data
- The GERDA collaboration,
- M. Agostini,
- A. M. Bakalyarov,
- M. Balata,
- I. Barabanov,
- L. Baudis,
- C. Bauer,
- E. Bellotti,
- S. Belogurov,
- A. Bettini,
- L. Bezrukov,
- D. Borowicz,
- E. Bossio,
- V. Bothe,
- V. Brudanin,
- R. Brugnera,
- A. Caldwell,
- C. Cattadori,
- A. Chernogorov,
- T. Comellato,
- V. D’Andrea,
- E. V. Demidova,
- N. Di Marco,
- A. Domula,
- E. Doroshkevich,
- V. Egorov,
- F. Fischer,
- M. Fomina,
- A. Gangapshev,
- A. Garfagnini,
- C. Gooch,
- P. Grabmayr,
- V. Gurentsov,
- K. Gusev,
- J. Hakenmüller,
- S. Hemmer,
- R. Hiller,
- W. Hofmann,
- M. Hult,
- L. V. Inzhechik,
- J. Janicskó Csáthy,
- J. Jochum,
- M. Junker,
- V. Kazalov,
- Y. Kermaïdic,
- T. Kihm,
- I. V. Kirpichnikov,
- A. Klimenko,
- R. Kneißl,
- K. T. Knöpfle,
- O. Kochetov,
- V. N. Kornoukhov,
- P. Krause,
- V. V. Kuzminov,
- M. Laubenstein,
- A. Lazzaro,
- M. Lindner,
- I. Lippi,
- A. Lubashevskiy,
- B. Lubsandorzhiev,
- G. Lutter,
- C. Macolino,
- B. Majorovits,
- W. Maneschg,
- M. Miloradovic,
- R. Mingazheva,
- M. Misiaszek,
- P. Moseev,
- I. Nemchenok,
- K. Panas,
- L. Pandola,
- K. Pelczar,
- L. Pertoldi,
- P. Piseri,
- A. Pullia,
- C. Ransom,
- S. Riboldi,
- N. Rumyantseva,
- C. Sada,
- F. Salamida,
- S. Schönert,
- J. Schreiner,
- M. Schütt,
- A-K. Schütz,
- O. Schulz,
- M. Schwarz,
- B. Schwingenheuer,
- O. Selivanenko,
- E. Shevchik,
- M. Shirchenko,
- H. Simgen,
- A. Smolnikov,
- D. Stukov,
- L. Vanhoefer,
- A. A. Vasenko,
- A. Veresnikova,
- C. Vignoli,
- K. von Sturm,
- T. Wester,
- C. Wiesinger,
- M. Wojcik,
- E. Yanovich,
- B. Zatschler,
- I. Zhitnikov,
- S. V. Zhukov,
- D. Zinatulina,
- A. Zschocke,
- A. J. Zsigmond,
- K. Zuber,
- G. Zuzel
Affiliations
- The GERDA collaboration
- M. Agostini
- Physik Department, Technische Universität München
- A. M. Bakalyarov
- National Research Centre “Kurchatov Institute”
- M. Balata
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute
- I. Barabanov
- Institute for Nuclear Research of the Russian Academy of Sciences
- L. Baudis
- Physik-Institut, Universität Zürich
- C. Bauer
- Max-Planck-Institut für Kernphysik
- E. Bellotti
- Dipartimento di Fisica, Università Milano Bicocca
- S. Belogurov
- Institute for Nuclear Research of the Russian Academy of Sciences
- A. Bettini
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova
- L. Bezrukov
- Institute for Nuclear Research of the Russian Academy of Sciences
- D. Borowicz
- Joint Institute for Nuclear Research
- E. Bossio
- Physik Department, Technische Universität München
- V. Bothe
- Max-Planck-Institut für Kernphysik
- V. Brudanin
- Joint Institute for Nuclear Research
- R. Brugnera
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova
- A. Caldwell
- Max-Planck-Institut für Physik
- C. Cattadori
- INFN Milano Bicocca
- A. Chernogorov
- Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”
- T. Comellato
- Physik Department, Technische Universität München
- V. D’Andrea
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’Aquila
- E. V. Demidova
- Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”
- N. Di Marco
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute
- A. Domula
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden
- E. Doroshkevich
- Institute for Nuclear Research of the Russian Academy of Sciences
- V. Egorov
- Joint Institute for Nuclear Research
- F. Fischer
- Max-Planck-Institut für Physik
- M. Fomina
- Joint Institute for Nuclear Research
- A. Gangapshev
- Max-Planck-Institut für Kernphysik
- A. Garfagnini
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova
- C. Gooch
- Max-Planck-Institut für Physik
- P. Grabmayr
- Physikalisches Institut, Eberhard Karls Universität Tübingen
- V. Gurentsov
- Institute for Nuclear Research of the Russian Academy of Sciences
- K. Gusev
- Joint Institute for Nuclear Research
- J. Hakenmüller
- Max-Planck-Institut für Kernphysik
- S. Hemmer
- INFN Padova
- R. Hiller
- Physik-Institut, Universität Zürich
- W. Hofmann
- Max-Planck-Institut für Kernphysik
- M. Hult
- European Commission, JRC-Geel
- L. V. Inzhechik
- Institute for Nuclear Research of the Russian Academy of Sciences
- J. Janicskó Csáthy
- Physik Department, Technische Universität München
- J. Jochum
- Physikalisches Institut, Eberhard Karls Universität Tübingen
- M. Junker
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute
- V. Kazalov
- Institute for Nuclear Research of the Russian Academy of Sciences
- Y. Kermaïdic
- Max-Planck-Institut für Kernphysik
- T. Kihm
- Max-Planck-Institut für Kernphysik
- I. V. Kirpichnikov
- Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”
- A. Klimenko
- Joint Institute for Nuclear Research
- R. Kneißl
- Max-Planck-Institut für Physik
- K. T. Knöpfle
- Max-Planck-Institut für Kernphysik
- O. Kochetov
- Joint Institute for Nuclear Research
- V. N. Kornoukhov
- Institute for Nuclear Research of the Russian Academy of Sciences
- P. Krause
- Physik Department, Technische Universität München
- V. V. Kuzminov
- Institute for Nuclear Research of the Russian Academy of Sciences
- M. Laubenstein
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute
- A. Lazzaro
- Physik Department, Technische Universität München
- M. Lindner
- Max-Planck-Institut für Kernphysik
- I. Lippi
- INFN Padova
- A. Lubashevskiy
- Joint Institute for Nuclear Research
- B. Lubsandorzhiev
- Institute for Nuclear Research of the Russian Academy of Sciences
- G. Lutter
- European Commission, JRC-Geel
- C. Macolino
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute
- B. Majorovits
- Max-Planck-Institut für Physik
- W. Maneschg
- Max-Planck-Institut für Kernphysik
- M. Miloradovic
- Physik-Institut, Universität Zürich
- R. Mingazheva
- Physik-Institut, Universität Zürich
- M. Misiaszek
- Institute of Physics, Jagiellonian University
- P. Moseev
- Institute for Nuclear Research of the Russian Academy of Sciences
- I. Nemchenok
- Joint Institute for Nuclear Research
- K. Panas
- Institute of Physics, Jagiellonian University
- L. Pandola
- INFN Laboratori Nazionali del Sud
- K. Pelczar
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute
- L. Pertoldi
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova
- P. Piseri
- Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano
- A. Pullia
- Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano
- C. Ransom
- Physik-Institut, Universität Zürich
- S. Riboldi
- Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano
- N. Rumyantseva
- Joint Institute for Nuclear Research
- C. Sada
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova
- F. Salamida
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’Aquila
- S. Schönert
- Physik Department, Technische Universität München
- J. Schreiner
- Max-Planck-Institut für Kernphysik
- M. Schütt
- Max-Planck-Institut für Kernphysik
- A-K. Schütz
- Physikalisches Institut, Eberhard Karls Universität Tübingen
- O. Schulz
- Max-Planck-Institut für Physik
- M. Schwarz
- Physik Department, Technische Universität München
- B. Schwingenheuer
- Max-Planck-Institut für Kernphysik
- O. Selivanenko
- Institute for Nuclear Research of the Russian Academy of Sciences
- E. Shevchik
- Joint Institute for Nuclear Research
- M. Shirchenko
- Joint Institute for Nuclear Research
- H. Simgen
- Max-Planck-Institut für Kernphysik
- A. Smolnikov
- Joint Institute for Nuclear Research
- D. Stukov
- National Research Centre “Kurchatov Institute”
- L. Vanhoefer
- Max-Planck-Institut für Physik
- A. A. Vasenko
- Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”
- A. Veresnikova
- Institute for Nuclear Research of the Russian Academy of Sciences
- C. Vignoli
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute
- K. von Sturm
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova
- T. Wester
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden
- C. Wiesinger
- Physik Department, Technische Universität München
- M. Wojcik
- Institute of Physics, Jagiellonian University
- E. Yanovich
- Institute for Nuclear Research of the Russian Academy of Sciences
- B. Zatschler
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden
- I. Zhitnikov
- Joint Institute for Nuclear Research
- S. V. Zhukov
- National Research Centre “Kurchatov Institute”
- D. Zinatulina
- Joint Institute for Nuclear Research
- A. Zschocke
- Physikalisches Institut, Eberhard Karls Universität Tübingen
- A. J. Zsigmond
- Max-Planck-Institut für Physik
- K. Zuber
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden
- G. Zuzel
- Institute of Physics, Jagiellonian University
- DOI
- https://doi.org/10.1007/JHEP03(2020)139
- Journal volume & issue
-
Vol. 2020,
no. 3
pp. 1 – 39
Abstract
Abstract The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ) decay of 76Ge. The technological challenge of Gerda is to operate in a “background-free” regime in the region of interest (ROI) after analysis cuts for the full 100 kg·yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Q ββ for the 0νββ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.04 − 0.85 + 0.78 · 10 − 3 $$ {16.04}_{-0.85}^{+0.78}\cdotp {10}^{-3} $$ cts/(keV·kg·yr) for the enriched BEGe data set and 14.68 − 0.52 + 0.47 · 10 − 3 $$ {14.68}_{-0.52}^{+0.47}\cdotp {10}^{-3} $$ cts/(keV·kg·yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components.
Keywords