Heliyon (Jun 2024)

Maturation-specific enhancements in lower extremity explosive strength following plyometric training in adolescent soccer players: A systematic review and meta-analysis

  • Lunxin Chen,
  • Ruixiang Yan,
  • Lin Xie,
  • Zhiyong Zhang,
  • Wenfeng Zhang,
  • Hengtong Wang

Journal volume & issue
Vol. 10, no. 12
p. e33063

Abstract

Read online

Background: For adolescent soccer players, good sprinting and jumping abilities are crucial for their athletic performance. The application of plyometric training on boosting explosive strength in adolescent soccer players is contingent upon the maturation phase, which can mediate the training-induced adaptations. Purpose: This systematic review and meta-analysis aim to explore the maturation effect of plyometric training on the lower limb explosive power of adolescent soccer players, with vertical countermovement jump (CMJ) and 20-m sprint as the main outcome indicators. Methods: An extensive search of the literature was carried out on various databases including PubMed, Web of Science, Scopus, ProQuest, and the China National Knowledge Infrastructure (CNKI), covering the time period from the establishment of each database to February 6, 2023. The search was conducted using English keywords such as ‘Plyometric,’ ‘Adolescent,’ ‘football,’ and ‘Explosive strength.’ This study utilized the Cochrane risk of bias assessment tool to conduct a standardized quality evaluation of all the included literature. Additionally, the Review Manager 5.4 software was employed to perform data analysis on all the extracted data. Results: A total of 17 studies involving 681 adolescent soccer players aged 10 to 19 were included. Plyometric training significantly improved CMJ performance across different maturation stages, especially in the post-peak height velocity stage (POST-PHV) [MD = 4.35, 95 % CI (2.11, 6.59), P < 0.01, I2 = 60 %]. The pre-peak height velocity stage (PRE-PHV) showed the next best improvement [MD = 3.00, 95 % CI (1.63, 4.37)], while the middle-peak height velocity stage (MID-PHV) showed the least improvement [MD = 2.79, 95 % CI (1.16, 4.41), P < 0.01, I2 = 49 %]. However, improvements in 20 m sprint ability were only observed in the PRE-PHV [MD = −0.06, 95 % CI (−0.12, 0), P < 0.01, I2 = 0 %] and MID-PHV [MD = −0.18, 95 % CI (−0.27, −0.08), P < 0.01, I2 = 0 %] stages. Conclusion: Plyometric training serves as a potent strategy for boosting the lower limb explosive strength of adolescent soccer players, and the training effect is closely related to the players' biological maturity. Considering biological maturity is a key aspect that this study deems essential for the formulation of effective training programs for these adolescent players.

Keywords