Entropy (Jun 2025)

Efficient Entanglement Swapping in Quantum Networks for Multi-User Scenarios

  • Binjie He,
  • Seng W. Loke,
  • Luke Lu,
  • Dong Zhang

DOI
https://doi.org/10.3390/e27060615
Journal volume & issue
Vol. 27, no. 6
p. 615

Abstract

Read online

Entanglement swapping is a crucial step in quantum communication, generating long-distance entanglements between quantum users for quantum network applications, such as distributed quantum computing. This study focuses on the efficiency of entanglement swapping strategies in quantum networks, particularly in multi-user concurrent quantum communication. Since multi-user concurrent quantum communication consists of multiple point-to-point quantum communications, we first analyze the challenges faced by existing entanglement swapping strategies in this scenario and then propose Parallel Segment Entanglement Swapping (PSES) to address them. PSES utilizes a tree-like model to divide the path into segments and execute entanglement swapping in parallel across them, thereby enhancing the generation rate of long-distance entanglement. Furthermore, we analyze the impact of resource contention on entanglement swapping in multi-user concurrent quantum communication and propose Multi-user PSES (M-PSES) to alleviate this negative impact. M-PSES leverages the entanglement swapping trigger signal and resource locking mechanisms to mitigate resource contention. The simulation results show that PSES performs superiorly to existing entanglement swapping strategies in point-to-point quantum communication, and M-PSES can achieve better performance than PSES in multi-user concurrent quantum communication.

Keywords