eLife (Oct 2018)

Morphogenetic degeneracies in the actomyosin cortex

  • Sundar Ram Naganathan,
  • Sebastian Fürthauer,
  • Josana Rodriguez,
  • Bruno Thomas Fievet,
  • Frank Jülicher,
  • Julie Ahringer,
  • Carlo Vittorio Cannistraci,
  • Stephan W Grill

DOI
https://doi.org/10.7554/eLife.37677
Journal volume & issue
Vol. 7

Abstract

Read online

One of the great challenges in biology is to understand the mechanisms by which morphogenetic processes arise from molecular activities. We investigated this problem in the context of actomyosin-based cortical flow in C. elegans zygotes, where large-scale flows emerge from the collective action of actomyosin filaments and actin binding proteins (ABPs). Large-scale flow dynamics can be captured by active gel theory by considering force balances and conservation laws in the actomyosin cortex. However, which molecular activities contribute to flow dynamics and large-scale physical properties such as viscosity and active torque is largely unknown. By performing a candidate RNAi screen of ABPs and actomyosin regulators we demonstrate that perturbing distinct molecular processes can lead to similar flow phenotypes. This is indicative for a ‘morphogenetic degeneracy’ where multiple molecular processes contribute to the same large-scale physical property. We speculate that morphogenetic degeneracies contribute to the robustness of bulk biological matter in development.

Keywords