Foods (Oct 2024)
Evaluating the Impact of Pre-Fermentative and Post-Fermentative Vinification Technologies on Bioactive Compounds and Antioxidant Activity of Teran Red Wine By-Products
Abstract
This study aimed to evaluate bioactive properties of Teran red wine by-products (grape skins, seeds, and wine lees) from six vinification treatments, including a control (7-day standard maceration). Pre-fermentative cryomaceration (8 °C; 48 h) and hot maceration (50 °C; 48 h), followed by the 13-day (CS15; C15; H15) and 28-day (C30; H30) period, considering fermentation/maceration and extended post-fermentative maceration, were conducted. In CS15, the saignée procedure was applied before fermentation/maceration. After maceration, the separation of by-products was performed, followed by lyophilization and solid–liquid extraction. Then, individual phenols were analyzed using high-performance liquid chromatography (HPLC), and total phenolic content (TPC) and antioxidant activity (FRAP) were analyzed using UV/Vis spectrophotometry. The results showed grape skins and wine lees in all treatments had significantly increased TPC and FRAP values compared to the control. The highest concentration of total phenols (HPLC) in grape skins was found in CS15, at 978.54 mg/100 g DW. In wine lees, the highest concentration of total phenols was detected in the 30-day maceration treatments, at 582.04 mg/100 g DW in C30, and 595.83 mg/100 g DW in H30, despite the pre-fermentative procedure. In grape seeds, the highest concentration of total phenols was found in the control (K7), at 432.42 mg/100 g DW. Pre-fermentative heating together with extended 30-day maceration (H30) strongly reduced the total levels of phenols (HPLC and TPC) in grape seed samples. The findings implied an evident impact of pre- and post-fermentative technologies on phenols and antioxidant activity in wine by-products of cv. Teran (Vitis vinifera L.).
Keywords