Water Research X (May 2024)
The ciliate Euplotes balteatus is resistant to Paralytic Shellfish Toxins from Alexandrium minutum (Dinophyceae)
Abstract
Research on interactions between grazers and toxigenic algae is fundamental for understanding toxin dynamics within aquatic ecosystems and developing biotic approaches to mitigate harmful algal blooms. The dinoflagellate Alexandrium minutum is a well-known microalga responsible for paralytic shellfish toxins (PSTs) contamination in many coastal regions worldwide. This study investigated the impact of the ciliate Euplotes balteatus on cell density and PSTs transfer in simulated A. minutum blooms under controlled conditions. E. balteatus exhibited resistance to the PSTs produced by A. minutum with a density of up to 10,000 cells/mL, sustaining growth and reproduction while eliminating algal cells within a few days. The cellular PSTs content of A. minutum increased in response to the grazing pressure from E. balteatus. However, due to the substantial reduction in density, the overall toxicity of the algal population decreased to a negligible level. Most PSTs contained within algal cells were temporarily accumulated in E. balteatus before being released into the water column, suggesting unclear mechanisms for PSTs excretion in unicellular grazers. In principle, the grazing of E. balteatus on A. minutum promotes the transfer of the majority of intracellular PSTs into extracellular portions, thereby mitigating the risk of their accumulation and contamination through marine trophic pathways. However, this process also introduces an increase in the potential environmental hazards posed by extracellular PSTs to some extent.