Buildings (Jan 2023)

Energy Evolution and Damage Characteristics of Rock Materials under Different Cyclic Loading and Unloading Paths

  • Bing Sun,
  • Haowei Yang,
  • Junwei Fan,
  • Xiling Liu,
  • Sheng Zeng

DOI
https://doi.org/10.3390/buildings13010238
Journal volume & issue
Vol. 13, no. 1
p. 238

Abstract

Read online

In order to study the deformation and failure characteristics of rocks under different cyclic loading and unloading paths, three stress path tests were conducted, and acoustic emission (AE) monitoring was conducted simultaneously. The mechanical characteristics and AE characteristics under different stress paths were analyzed, and the influences of the different stress paths on the energy dissipation and deformation damage were investigated. The law of energy evolution considering viscoelasticity under different stress paths was obtained. The concept of ultimate damage energy and its calculation method was proposed. The results show that the “hardening effect” of sandstone and granite under the constant lower limit (CLLCL) is the most significant in maximizing the mechanical property. The CLLCL imparts a stronger elastic property to rocks than the variable lower limit (VLLCL) does, while the VLLCL causes more damage to rocks than the CLLCL. A significant linear relationship between the proportion of damage energy and the proportion of elastic energy was discovered. Based on this linear relationship, the ultimate damage energy can be calculated for sandstone and granite. The evolution of the damage variable based on damage energy was compatible with the real damage condition, which validates the ultimate damage energy calculation method. The research results lay a theoretical foundation for the design and construction of geotechnical engineering.

Keywords