Neurobiology of Disease (Jul 2020)

Increased transcription of transglutaminase 1 mediates neuronal death in in vitro models of neuronal stress and Aβ1–42-mediated toxicity

  • Debasmita Tripathy,
  • Alice Migazzi,
  • Federica Costa,
  • Alessandro Roncador,
  • Pamela Gatto,
  • Federica Fusco,
  • Lucia Boeri,
  • Diego Albani,
  • J. Leon Juárez-Hernández,
  • Carlo Musio,
  • Laura Colombo,
  • Mario Salmona,
  • M.M. Micha Wilhelmus,
  • Benjamin Drukarch,
  • Maria Pennuto,
  • Manuela Basso

Journal volume & issue
Vol. 140
p. 104849

Abstract

Read online

Alzheimer's disease (AD) is the most common cause of dementia. At the pre-symptomatic phase of the disease, the processing of the amyloid precursor protein (APP) produces toxic peptides, called amyloid-β 1–42 (Aβ 1–42). The downstream effects of Aβ 1–42 production are not completely uncovered. Here, we report the involvement of transglutaminase 1 (TG1) in in vitro AD models of neuronal toxicity. TG1 was increased at late stages of the disease in the hippocampus of a mouse model of AD and in primary cortical neurons undergoing stress. Silencing of TGM1 gene was sufficient to prevent Aβ-mediated neuronal death. Conversely, its overexpression enhanced cell death. TGM1 upregulation was mediated at the transcriptional level by an activator protein 1 (AP1) binding site that when mutated halted TGM1 promoter activation. These results indicate that TG1 acts downstream of Aβ-toxicity, and that its stress-dependent increase makes it suitable for pharmacological intervention.

Keywords