Sensors (Jul 2024)

A Novel Instruction Driven 1-D CNN Processor for ECG Classification

  • Jiawen Deng,
  • Jie Yang,
  • Xin’an Wang,
  • Xing Zhang

DOI
https://doi.org/10.3390/s24134376
Journal volume & issue
Vol. 24, no. 13
p. 4376

Abstract

Read online

Electrocardiography (ECG) has emerged as a ubiquitous diagnostic tool for the identification and characterization of diverse cardiovascular pathologies. Wearable health monitoring devices, equipped with on-device biomedical artificial intelligence (AI) processors, have revolutionized the acquisition, analysis, and interpretation of ECG data. However, these systems necessitate AI processors that exhibit flexible configuration, facilitate portability, and demonstrate optimal performance in terms of power consumption and latency for the realization of various functionalities. To address these challenges, this study proposes an instruction-driven convolutional neural network (CNN) processor. This processor incorporates three key features: (1) An instruction-driven CNN processor to support versatile ECG-based application. (2) A Processing element (PE) array design that simultaneously considers parallelism and data reuse. (3) An activation unit based on the CORDIC algorithm, supporting both Tanh and Sigmoid computations. The design has been implemented using 110 nm CMOS process technology, occupying a die area of 1.35 mm2 with 12.94 µW power consumption. It has been demonstrated with two typical ECG AI applications, including two-class (i.e., normal/abnormal) classification and five-class classification. The proposed 1-D CNN algorithm performs with a 97.95% accuracy for the two-class classification and 97.9% for the five-class classification, respectively.

Keywords