Zoosystematics and Evolution (Sep 2016)

Life on the beach for a sand crab (Emerita rathbunae) (Decapoda, Hippidae): parasite-induced mortality of females in populations of the Pacific sand crab caused by Microphallus nicolli (Microphallidae)

  • Juan Violante-González,
  • Scott Monks,
  • Guadalupe Quiterio-Rendon,
  • Sergio García-Ibáñez,
  • Edvino Larumbe-Morán,
  • Agustín A. Rojas-Herrera

DOI
https://doi.org/10.3897/zse.92.8256
Journal volume & issue
Vol. 92, no. 2
pp. 153 – 161

Abstract

Read online Read online Read online

Parasites, by definition, can affect mortality of their host, making parasitism an important biotic determinant of animal population dynamics and community structure. Reduction in the number of larger, reproductive age females in populations of the Pacific sand crab, Emerita rathbunae (Decapoda, Hippidae), was observed in studies of the helminth community of this host. The aim of this study was to determine if high abundance of the metacercaria of the trematode, Microphallus nicolli (Microphallidae), causes mortality in this host. Females of E. rathbunae were collected from four sandy beaches in Guerrero State, Mexico, and helminths were collected from each crab. An analysis of variance (Anova) was applied to these data in order to identify differences in abundance between sizes of crabs, and an analysis of covariance (Ancova) was applied to identify differences in the abundance of metacercariae between locations. Parasite-related mortality was inferred by a decrease in abundance in older hosts. Linear and polynomial regressions of mean abundance of helminths (log x+1 transformed data) vs. cephalothorax length of crabs were significant for the four populations of E. rathbunae, indicating increased mortality of older, more heavily infected female crabs and resultant removal from the population. Encapsulation and melanization of cysts by crabs was observed, indicating that an immune response by crabs also killed a portion of the cysts from subsequent exposures. Mortality of hosts through behavioral modification favoring transmission of highly infected crabs was suggested as the driving force behind this process.