Вавиловский журнал генетики и селекции (Apr 2017)
Study on early inflorescence development in bread wheat (T. aestivum L.) lines with non-standard SCR-morphotype
Abstract
Features of wheat (Triticum aestivum L.) inflorescence development define its architecture and have an impact on yield potential. Wheat lines and forms with altered inflorescence morphology are important genetic resources for the study on the genetic mechanisms underlying plant developmental programs and inflorescence architecture; they are also important for practical use to increase productivity. Normally, wheat spikelets are arranged in two parallel rows along the spike axis. The SCR (screwed spike rachis) lines represent a non-standard morphotype, which is characterized by a spiral arrangement of spikelets along the spiked rachis. The study of the early stages of the inflorescence development in SCR-lines using light and scanning electron microscopy revealed that the spiral arrangement of spikelets were not related to changes at the early stage of inflorescence development, and resulted from spiral growth of spike rachis cells at later stages of spike growth. Thus, the spiral arrangement of spikelets in cereal inflorescence may have resulted not only from peculiarities of the mutual arrangement of spikelet meristems (phyllotaxis), but also from cell growth features at later stages of inflorescence growth. It was shown that SCR is inherited as a dominant monogenic trait; its expression can be modified by genotypic background. The SCR-lines characterized using light and scanning electron microscopy represent an important genetic resource for further study of the molecular-genetic mechanisms determining plant architecture. Furthermore, they can be used to develop wheat lines and cultivars with new inflorescence phenotypes.
Keywords