This paper presents a study on the application of the Markov Model (MM) to determine the transformer population states based on Health Index (HI). In total, 3195 oil samples from 373 transformers ranging in age from 1 to 25 years were analyzed. First, the HI of transformers was computed based on yearly individual oil condition monitoring data that consisted of oil quality, dissolved gases, and furanic compounds. Next, the average HI for each age was computed and the transition probabilities were obtained based on a nonlinear optimization technique. Finally, the future deterioration performance curve of the transformers was determined based on the MM chain algorithm. It was found that the MM can be used to predict the future transformers condition states. The chi-squared goodness-of-fit analysis revealed that the predicted HI for the transformer population obtained based on MM agrees with the average computed HI along the years, and the average error is 3.59%.